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Abstract In a quantum optimal control experiment a system is driven towards a target
observable value with a tailored external field. The underlying quantum control land-
scape, defined by the observable as a function of the control variables, lacks suboptimal
extrema upon satisfaction of certain physical assumptions. This favorable topology
implies that upon climbing the landscape to seek an optimal control field, a steepest
ascent algorithm should not halt prematurely at suboptimal critical points, or traps.
One of the important aforementioned assumptions is that no limitations are imposed
on the control resources. Constraints on the control restricts access to certain regions
of the landscape, potentially preventing optimal performance through convergence to
limited resource induced suboptimal traps. This work develops mathematical tools to
explore the local landscape structure around suboptimal critical points. The landscape
structure may be favorably altered by systematically relaxing the control resources. In
this fashion, isolated suboptimal critical points may be transformed into extensive level
sets and then to saddle points permitting further landscape ascent. Time-independent
kinematic controls are employed as stand-ins for traditional dynamic controls to allow
for performing a simpler constrained resource landscape analysis. The kinematic con-
trols can be directly transferred to their dynamic counterparts at any juncture of the
kinematic analysis. The numerical simulations employ a family of landscape explo-
ration algorithms while imposing constraints on the kinematic controls. Particular
algorithms are introduced to meet the goals of either climbing the landscape or seek-
ing specific changes in the topology of the landscape by relaxing the control resources.
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1 Introduction

A quantum control experiment typically aims to identify a tailored radiation pulse
that enables achieving a high fidelity for a target objective value. Continued
improvements in laser pulse-shaping and detection techniques as well as com-
puter learning algorithms have led to a growing number of successful experiments
([9,11,13,18]; for an overview, see [2]). In addition to the experimental advances,
quantum control theory has rapidly developed along with extensive numerical sim-
ulations [1,5,10,19,29,33,32]. The generally good performance of quantum control
experiments and simulations has been attributed to the attractive topology of the under-
lying quantum control landscape, which is the observable as a function of the control
variables [20]. Searching for an optimal control thus entails climbing the landscape
aiming to reach a global extremum. The present work considers the observable as the
state-to-state transition probability Pi→ f ,

Pi→ f = |〈 f |U (T, 0)|i〉|2, (1)

where U (t, 0) is the unitary time-evolution operator satisfying the time-dependent
Schrödinger equation

ı h̄
∂

∂t
U (t, 0) = H(t)U (t, 0), U (0, 0) = 1. (2)

In Eq. (1), T is the target time and the Hamiltonian H(t) depends on the dynamic
control ε(t). Formally, U (T, 0) may be written as

U (T, 0) = T exp

⎛
⎝− ı

h̄

T∫

0

H(t)dt

⎞
⎠ (3)

with T being the time-ordering operator. A critical point of the Pi→ f [ε(t)] landscape
is defined as

δPi→ f

δε(t)
= 0, ∀t ∈ [0, T ]. (4)

Landscape critical points are of special interest as they correspond to locations where
a climb, to first order [c.f., Eq. (4)], stops. When specific Assumptions are satisfied,
the Pi→ f [ε(t)] landscape is free of suboptimal trapping critical points, thus permitting
ready ascent of the landscape approaching Pi→ f = 1.0 [20]. The first Assumption is
that the quantum system is controllable [27,23], and the second Assumption is that
δU (T, 0)/δε(t) is full rank. These two Assumptions appear to be readily satisfied in
many cases [16]. The third Assumption, which is most salient to the present work, is
that the control resources ε(t) are free of constraints, which permits unfettered access
to all regions of the control landscape. However, experiments are inherently subject to
constraints. For example, laser pulses are restricted to lie within a limited bandwidth
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Fig. 1 (Color available online) Distinct possible local landscape topologies at suboptimal transition prob-
ability landscape critical points; the same topological behavior would also apply to more general control
observables. Two controls, K1 and K2, are shown for illustration, but in practice there will be many more
control variables. Plot a shows a trap existing as an isolated point on the landscape, where any change to
the controls results in a decrease in Pi→ f along the indicated trajectory. Plot b shows a trap residing on a
level set, forming a suboptimal submanifold of solutions where suitable changes to the controls along the
trajectory can preserve the suboptimal Pi→ f value. Plot c shows a saddle, where subsequent changes to
the controls along an appropriate path permit increasing Pi→ f , possibly to a higher yield trap or even the
maximum Pi→ f = 1.0

about some operational frequency [24], although bandwidth expansion and frequency
shifting techniques are becoming more prevalent [4,8,3]. While mathematically prov-
ing that the Pi→ f landscape is free of suboptimal critical points calls for unrestricted
access to all controls, in practice good if not fully optimal performance is expected with
a judicious choice of resources (e.g., operation with phase and amplitude-modulated
control fields at or near the system’s natural transition frequencies). Little is known
about the boundary between adequate resources and where further enchroachment
will introduce suboptimal landscape critical points.

Numerous works have incorporated specific constraints in quantum control simu-
lations, including spectral component restrictions [30,12,31] and limitations on phase
controls [14,28]. Understanding the role of constraints on the ability to achieve opti-
mal quantum control remains an important goal and motivates the present work. Con-
straints may be viewed as limiting access to certain regions of the landscape, and as
a result possibly introducing suboptimal extrema whose encounter upon optimization
could prohibit reaching the maximum yield. Such limited resource induced subop-
timal extrema may be viewed as artificial landscape features, as they arise due to
restricted access to the underlying trap-free landscape. However, in the laboratory or
in simulations these features will appear to be real when employing significant control
constraints. This work presents mathematical tools to explore and systematically alter
the local landscape structure around such suboptimal critical points, which include
saddles and traps. Figure 1 illustrates three distinct topological scenarios that may be
encountered at a constraint-induced trap. Figure 1a shows a trap existing as a point
where the local landscape curvature is negative, implying that any variation to the
constrained controls K1, K2 will result in a reduced observable value, as shown by
the decreasing trajectory for Pi→ f . Figure 1b shows a trap that resides on a mani-
fold of suboptimal solutions (rather than a point), and the path depicted by the arrow
shows that careful variation of the constrained controls can permit moving along this
submanifold, referred to as a suboptimal observable-preserving level set. Figure 1c
indicates a saddle, where suitable variation of the constrained controls can lead to
improved or even optimal control, as shown by the increasing trajectory for Pi→ f .
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A dynamic control ε(t) can include large numbers of variables such as frequency-
dependent phases and amplitudes; as such, a general constrained dynamic landscape
assessment is difficult to attain, especially as the evolution operator U (t, 0) can depend
upon the control in a complex manner. As a means to simplify the control landscape
analysis, we will utilize the identity

U = exp(ı A) (5)

where A is a Hermitian matrix that ensures unitarity of U ≡ U (T, 0) [20]. The
matrix elements of A have been conveniently treated as time-independent ‘kinematic’
control variables in previous works [6,15,21]. These control variables subsume the
time-dependence of the Hamiltonian, and much has been learned about control land-
scape topology using kinematic variables. The present work will utilize these simpler
kinematic controls to investigate constrained landscape topology.

The unconstrained landscapes Pi→ f [A] and Pi→ f [ε(t)] share the same topol-
ogy [20]. This work aims to explore the topological features of the constrained
Pi→ f [A] landscape resting on the foundation that kinematic controls can be directly
transferred to their dynamic control counterparts by equating Eqs. (3) and (5),

T exp

⎛
⎝− ı

h̄

T∫

0

H(t)dt

⎞
⎠ = exp(ı A). (6)

Assuming that the system is controllable [23,27], then Eq. (6) may be used to formulate
a practical methodology for converting from kinematic to dynamic controls, A → ε(t),
and generally ε(t) will not be unique for a specified A. The transformation A → ε(t)
can be implemented in a variety of ways, depending on whether each element of U
in Eq. (6) is to be preserved or at the other extreme where only the Pi→ f value (i.e.,
the norm of a single element of U ) is asked to be maintained when identifying ε(t).
The present work focuses on exploiting kinematic controls, with consideration of the
kinematic → dynamic mapping left for a future study [7]. However, the capability of
performing such a transferral [17] provides a supporting foundation for the work here.

The paper is structured as follows. Section 2 presents the mathematical tools to
explore the local landscape around a limited resource induced suboptimal critical
point. Gradient-based optimization is utilized to guide constrained controls towards
the closest, steepest ascent-accessible critical point. The neighborhood of an isolated
critical point can be explored as a basis to guide systematic relaxation of the control
constraint in order to seek the formation of a suboptimal observable-preserving level
set of controls. The latter freedom to alter critical point character can be important, as
particular locations on suboptimal level sets may have distinct features (e.g., desirable
robustness to control perturbations). Further enhancement of the control resources may
also convert a suboptimal trapped level set into a saddle permitting continued ascent of
the landscape. Section 3 presents numerical illustrations that utilize the mathematical
techniques from Sect. 2 to examine the variety of landscape topologies at suboptimal
critical points illustrating the circumstances in Fig. 1. Section 4 provides concluding
remarks.
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2 Mathematical formulation

The search over a set of constrained control variables that produce the highest possible
observable value occurs on the quantum control landscape. Generally, the presence
of constraints will restrict free traversal of the landscape, in some a priori unknown
manner. To ameliorate the complexity of performing a dynamic landscape analysis,
this work uses time-independent kinematic controls, which are the elements of the N -
dimensional Hermitian matrix A in Eq. (5). We consider real symmetric A matrices,
which in itself may be viewed as a constraint on the space of admissible controls,
though it still permits up to M = N (N + 1)/2 variables (i.e., complex Hermitian A
matrices have up to N 2 variables). Previous work showed that at least 2N −2 variables
are generally required to achieve optimal Pi→ f control [15,14,22], thus we still have
M > 2N − 2. However, an inappropriate set of even more than 2N − 2 controls
can still present a significant limitation. The control variables can be collected into a
length-M vector

K = [A11, A12, . . . , AN N ] (7)

where Km denotes the mth control variable.
The remainder of Sect. 2 is organized as follows. Section 2.1 presents the local

search procedure used for ascending the Pi→ f [A] landscape to achieve the high-
est possible yield when the controls are subject to a constraint. This algorithm is a
constraint-adopted form of the D-MORPH [25,26] procedure. Section 2.2 derives an
equation for the constrained Hessian (i.e., the matrix of second-order derivatives of
Pi→ f with respect to the control variables) at a suboptimal critical point to elucidate
local landscape structure. In particular, the nature of the eigenvalue spectrum of the
Hessian can differentiate saddles from traps, and further distinguish traps that exist as
points (Fig. 1a) from those that exist as part of a set of connected suboptimal controls
(Fig. 1b). In the former case, it is possible to systematically relax the originally serious
constraint and then explore the range of connected families of controls that form a
level set for the trap using a procedure presented in Sect. 2.3. Section 2.4 also considers
relaxation of the constrained controls to transform the situation in Fig. 1a into that of
Fig. 1c for climbing higher on the landscape. These capabilities address the important
practical aim of assessing the possible gains in desirable performance and yield at the
expense of enhancing the still limited control resources. Table 1 summarizes the goals
and associated key equations developed in Sect. 2.

2.1 Climbing the Pi→ f landscape with constrained control resources

The goal of the constrained D-MORPH algorithm used in this work is to systematically
vary the controls K [c.f., Eq. (7)] in order to maximize Pi→ f while maintaining a con-
trol constraint denoted as C . Such a circumstance may arise dynamically in many ways
(e.g., the pulse fluence is constant). The procedure introduces an optimization progress
parameter s such that K → K (s) and subsequently Pi→ f [K ] → Pi→ f [K (s)]. To
first order, increasing Pi→ f requires satisfying
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Table 1 Summary of goals, variables, and relevant equations for the landscape critical point exploration
techniques developed in Sect. 2

Goal Reach critical point
under an imposed con-
straint

Move on a trap
level set

Vary trap topology by altering
the constraint

Subsection 2.1 2.3 2.4

Variables K K c

Morphing parameter s r u

Differential equation d K
ds = P∇C∇ Pi→ f

d K
dr = P∇C PH̃g′ dc

du = PΩ h

Comments Trap conditions:
d Pi→ f /ds = 0;
∇ Pi→ f and ∇C
are parallel

g′ chosen to
satisfy an
ancillary cost
function

Create a level set by choosing
h to minimize L1 in
Eq. (42)

Create a saddle by choosing h
to maximize L2 in Eq. (45)

See the indicated Subsection for details

d Pi→ f

ds
= ∇ P


i→ f
d K

ds
≥ 0, (8)

where ∇ Pi→ f is a length-M column vector containing elements ∂ Pi→ f /∂Km, m =
1, . . . , M with [6]

∂ Pi→ f

∂Km
= −2Im

⎛
⎝〈i |U †| f 〉〈 f |

1∫

0

du exp[ı(1 − u)A] ∂ A

∂Km
exp(ıu A)|i〉

⎞
⎠ . (9)

Here ∂ A/∂Km is an N × N matrix with 1 in the position(s) corresponding to the
mth control variable and zeros elsewhere. Let C(s) := C[K (s), c] denote a constraint
function that depends on the control variables K as well as a set of L constraint
parameters c = [c1, . . . , cL ] that are independent of s. The parameters c depend upon
the nature of C and will be specified in each particular application. The constraint
is imposed by demanding that C[K (s), c] = C0 be maintained for some specified
constant value of C0 as K (s) is varied. The present work assumes a single constraint
C for clarity, but the formulation may be generalized to a set of simultaneously imposed
constraints. Satisfying C = C0 to first order requires

dC

ds
= ∇C
 d K

ds
= 0, (10)

where ∇C is a length-M vector containing elements ∂C/∂Km, m = 1, . . . , M . The
goal is to identify a differential equation for K (s) such that Eqs. (8) and (10) are
simultaneously satisfied. To this end, we define the M × M positive semidefinite
projector P∇C = (1 − ∇C(∇C
∇C)−1∇C
) and let
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d K

ds
= P∇C f (s). (11)

Any choice for f (s) will ensure satisfaction of Eq. (10) since ∇C
P∇C = 0, and
setting f (s) = ∇ Pi→ f will concomitantly satisfy Eq. (8). Integrating the M differen-
tial equations in Eq. (11) will produce a trajectory K (s) that will evolve over s until
d Pi→ f /ds = 0, to specified precision. The unconstrained landscape analysis showed
that critical points where ∇ Pi→ f = 0, which forces d Pi→ f /ds = 0 [c.f., Eq. (8)],
only occur at Pi→ f = 0 or 1 [20]. However, due to the imposition of C , it may be possi-
ble that d Pi→ f /ds = 0 when ∇ Pi→ f �= 0 and 0 < Pi→ f < 1, i.e., when the controls
become stuck at a local trap where d K/ds = 0 as s → ∞. Substituting Eq. (11) into
Eq. (8) with f (s) = ∇ Pi→ f yields the trap criterion ∇ P


i→ f P∇C∇ Pi→ f = 0, which
implies that the gradients ∇ Pi→ f and ∇C are parallel at a critical point.

2.2 Elucidating the character of constraint-induced critical points

At a suboptimal critical point where d Pi→ f /ds = 0, the second derivative of Pi→ f

(i.e., the Hessian) needs to be investigated to deduce whether a trap or a saddle has
been encountered. As background, at the top of the unconstrained Pi→ f landscape,
the Hessian has at most 2N − 2 negative eigenvalues, where the remaining eigenval-
ues are zero [22]. The Hessian eigenvectors associated with the negative eigenvalues
reveal how the controls may be varied in a coordinated manner to move off the top of
the landscape. The zero eigenvalues have associated eigenvectors indicating how the
controls may be varied while maintaining Pi→ f = 1.0 to second order. Importantly,
when control variables are subject to constraints, the unconstrained Hessian matrix
with elements ∂2 Pi→ f /∂Km∂Kn generally does not provide a proper description of
the local curvature at suboptimal critical points. The ‘constrained Hessian,’ derived
below, reveals the true local landscape structure at a constraint-induced critical point.

To distinguish between the present excursions in the neighborhood of a local subop-
timal critical point and the initial landscape ascent, a new variable r is introduced such
that K → K (r) and C → C[K (r), c] (see Table 1). The analysis below considers that
a landscape climb has already been performed to reach a constraint-induced critical
point at a suboptimal value Pi→ f < 1.0 that will be maintained to second order while
K (r) is varied such that d Pi→ f /dr = 0 and d2 Pi→ f /dr2 = 0. These criteria give

1

2

(
d K

dr

)

∇2 Pi→ f

d K

dr
Δr2 + 1

2
∇ P


i→ f
d2 K

dr2 Δr2 = 0. (12)

Similarly, the constraint C(r) = C0 is demanded to be maintained up to second order,
giving

1

2

(
d K

dr

)

∇2C

d K

dr
Δr2 + 1

2
∇C
 d2 K

dr2 Δr2 = 0. (13)
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Rewriting Eq. (13) as

∇C
 d2 K

dr2 = −
(

d K

dr

)

∇2C

d K

dr
(14)

and then multiplying on the left by ∇C(∇C
∇C)−1 yields

(1 − P∇C )
d2 K

dr2 = −∇C(∇C
∇C)−1
(

d K

dr

)

∇2C

d K

dr
. (15)

Multiplying Eq. (15) by ∇ P

i→ f and noting that ∇ P


i→ f P∇C = 0 at a critical point
(see Sect. 2.1) produces

∇ P

i→ f

d2 K

dr2 = −∇ P

i→ f ∇C(∇C
∇C)−1

(
d K

dr

)

∇2C

d K

dr
. (16)

From Eq. (12),

∇ P

i→ f

d2 K

dr2 = −
(

d K

dr

)

∇2 Pi→ f

d K

dr
. (17)

Combining Eqs. (16) and (17) and rearranging yields

(
d K

dr

)
 (
∇2 Pi→ f − ∇ P


i→ f ∇C(∇C
∇C)−1∇2C
) d K

dr
= 0. (18)

The term ∇2 Pi→ f , with elements ∂2 Pi→ f /∂Km∂Kn , is the unconstrained Hessian
matrix, while the term ∇ P


i→ f ∇C(∇C
∇C)−1∇2C incorporates the imposed con-
straint. The constrained Hessian matrix H can then be identified from Eq. (18) as

H = ∇2 Pi→ f − ∇ P

i→ f ∇C(∇C
∇C)−1∇2C, (19)

and Eq.(18) becomes

(
d K

dr

)

H

(
d K

dr

)
= 0. (20)

This equation may be interpreted as specifying a differential change in the controls,
d K/dr , that also leaves the value of Pi→ f invariant at a constraint-induced suboptimal
critical point. The constrained Hessian can be written in terms of its eigenvalues λi

and eigenvectors νi ,

H =
M∑

i=1

λiνiν


i , (21)
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which can be used to understand the local landscape structure around a suboptimal
critical point. Section 2.3 will show how to vary the controls while staying on a critical
point level set based on the eigenstructure of the constrained Hessian (i.e., suggested
by Fig. 1b, c). Note that if all of the eigenvalues are negative, {λi < 0}, then the
suboptimal constraint-induced critical point is isolated as in Fig. 1a. Section 2.4 will
then show how to systematically change the form of the constrained resources to
transition from Fig. 1a to Fig. 1b or c.

2.3 Moving on a suboptimal critical point level set

We seek to explore the local landscape level set around a suboptimal critical point by
identifying d K/dr such that Eq. (20) is satisfied. Towards this goal, a change in K
that preserves the constraint C = C0 implies that

d K

dr
= P∇C g (22)

where the function g will be specified below. Introducing Eq. (22) into Eq. (20), we
define the projected Hessian as

H̃ = P∇CHP∇C , (23)

such that

g
H̃g = 0. (24)

Equation (24) dictates that g must lie in the nullspace of H̃, thereby specifying the
right-hand side of Eq. (22). The projector P∇C introduces into H̃ the same number
of ‘trivial’ zero eigenvalues as the number of imposed constraints. In this work, we
consider only a single constraint so that the presence of a level set requires that H̃ have
at least two zero eigenvalues. Let J < M −1 denote the number of remaining non-zero
H̃ eigenvalues. The projected Hessian H̃ can be written analogously to Eq. (21) as a
sum

H̃ =
J∑

j=1

λ̃ j ν̃ j ν̃


j , (25)

where λ̃ j is the non-zero projected Hessian eigenvalue associated with the eigenvector
ν̃ j . Eq. (24) can be rewritten as

g

⎛
⎝

J∑
j=1

λ̃ j ν̃ j ν̃


j

⎞
⎠ g = 0, (26)

which requires that ν̃

j g = 0 for all j . The function g can then be defined as
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g =
⎛
⎝1 −

J∑
j=1

ν̃ j ν̃


j

⎞
⎠ g′ (27)

= PH̃g′ (28)

for some arbitrary function g′ that may be chosen to satisfy an ancillary cost as desired
and PH̃ projects into the nullspace of H̃. Combining all of the above steps gives

d K

dr
= P∇CPH̃g′, (29)

which will ensure that changes in K lie in the nullspace of H̃ while preserving the
critical point criteria.

2.4 Varying the form of the constraint to alter critical point topology

Recall that the constraint C is a function of the controls K as well as the constraint
parameters c. In the formulation for climbing the landscape subject to a constraint
(Sect. 2.1) and for moving along a suboptimal level set (Sect. 2.3), there was no
variation permitted in c, thereby maintaining the form of the control constraint. In
practice, constraints on the controls may be considered for relaxation if desirable
variation of landscape topology can be achieved. The case of particular interest is an
initially constrained control form producing a suboptimal trap as an isolated landscape
point, where it is not possible to vary K without decreasing Pi→ f (see Fig. 1a). Here
we present a systematic procedure to relax the constraint parameters c with the goal
of converting the isolated trap into either (i) a suboptimal level set (Fig. 1b) or (ii) a
saddle permitting a further increase in Pi→ f (Fig. 1c). Considering that the goals here
are distinct from those in Sects. 2.1–2.3, we define u (see Table 1) as a new parameter
where c → c(u) such that C(u) := C[K , c(u)]. In order to emphasize that just the
form of the control constraint is being altered, we demand that C[K , c(u)] = C0 be
maintained as a constant while c(u) evolves. Additionally, at this stage of altering
the form of the constraint, the control K is fixed at its original critical point value;
after morphing c, then the control K can again be varied within the new form of the
constraint to take advantage of the altered local landscape topology.

As stated above, the first condition imposed during the morphing of c(u) is that
C = C0 be maintained, or

dC

du
=

L∑
l=1

∂C

∂cl

dcl

du
= 0. (30)

Thus, dc/du must satisfy

∇cC
 dc

du
= 0, (31)

where ∇cC is the length-L vector with elements ∂C/∂cl .
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During the variation of c, the gradients ∇ Pi→ f and ∇C need to remain parallel
to assure satisfaction of the critical point condition P∇ Pi→ f ∇C = 0. The M × M
projector P∇ Pi→ f (defined analogously to P∇C as in Sect. 2.1) has one identically
zero eigenvalue, which implies that it can be written in terms of its R = M − 1
non-zero eigenvalues σ and corresponding eigenvectors w as

P∇ Pi→ f =
R∑

j=1

σ jw jw


j . (32)

Maintaining the gradients ∇ Pi→ f and ∇C as parallel implies that

P∇ Pi→ f ∇C =
R∑

j=1

σ jw jw


j ∇C = 0, (33)

which requires

w

j ∇C = 0 (34)

for all j and u. With the goal of obtaining an equation for c(u), we may differentiate
Eq. (34) to form

d

du

(
w


j ∇C
)

= 0. (35)

Note that

d

du
(∇C) =

(
∂∇C

∂c

)
dc

du
. (36)

The term ∂∇C/∂c is an M × L matrix with elements ∂2C/∂Km∂cl . To simplify
notation, we define the matrix Λ with elements

Λml = ∂2C

∂Km∂cl
. (37)

Therefore, the R + 1 = M equations that must be satisfied as c is varied over u are
Eq. (31) and

w

j Λ

dc

du
= 0 ∀ j = 1, . . . , R, (38)

where Eq. (38) relies on dw j/dc = 0 which results from Pi→ f and ∇ Pi→ f being
independent of c [c.f., Eq. (9)]. Eqs. (31) and (38) are both of the form p
dc/du = 0
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where p is a length-L vector. An L × M matrix Ω can be formed from the M equations
arising from (31) and (38), where

Ω =
⎛
⎝

| |
p1 . . . pM

| |

⎞
⎠ . (39)

Then, an L × L projector (matrix) PΩ is defined as

PΩ = 1 − Ω(Ω
Ω)−1Ω
, (40)

where the matrix Ω
Ω is assumed to be full rank. We have the following differential
equation for c(u):

dc

du
= PΩh. (41)

Upon starting with a local isolated trap, the function h can be chosen in an attempt to
either create (i) a trap level set for traversal or (ii) a saddle for further climbing of the
landscape. Below, these two goals are addressed by specifying that h extremize the
ancillary cost function L1 or L2, respectively.
(i) Creation of a level set. For the goal of converting the original constraint-induced
isolated trap into a level set (i.e., Fig. 1a → b), we employ the cost function

L1 = Tr(H̃2) =
∑

j

(
λ̃ j

)2
. (42)

Minimization of L1 implies reduction of the projected Hessian eigenvalues λ̃ j towards
zero, thereby allowing for creation of a trap level set. In practice, the generation of
even one non-trivial zero eigenvalue λ̃ j (i.e., beyond the constraint-induced trivial zero
eigenvalue of H̃ discussed in 2.3) via minimization of L1 would suffice for opening
up a level set (see Fig. 1b). In order to identify h, we differentiate L1,

dL1

du
=

(
∂L1

∂c

)
 dc

du
(43)

=
(

∂L1

∂c

)

PΩh, (44)

and set h = −∂L1/∂c to minimize L1.
(ii) Creation of a saddle. For the goal of transforming an isolated trap into a saddle
(i.e., Fig. 1a → c), we seek to make the constrained Hessian H indefinite. The creation
of a positive Hessian eigenvalue may permit a control trajectory to ‘escape’ the original
isolated trap by climbing the landscape using the first-order constrained D-MORPH
procedure described in Sect. 2.1 after taking a small step away from the critical point
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along the appropriate saddle-increasing direction. For this objective we utilize the cost
function

L2 = tr(H) =
∑

j

λ j , (45)

where maximizing L2 over an excursion of c(u) aims to create at least one positive
constrained Hessian eigenvalue. Maximization of L2 is accomplished by setting h =
∂L2/∂c, although there is generally no assurance that a positive eigenvalue will develop
by morphing c(u). Here we use the constrained (i.e., not the projected) Hessian based
on the desire to alter the eigenstructure of H without any concern towards also creating
a level set as in case (i) above.

Section 3 presents examples illustrating the transformations from an isolated trap
to a level set (Fig. 1a → b) as well as to a saddle (Fig. 1a → c).

3 Numerical illustrations

The simulations below utilize systems of low-dimension N for simple illustration of
the concepts presented in Sect. 2. The constraints imposed are motivated by their
dynamic counterparts and others could be considered as well. To that end, extensive
additional studies will be needed to thoroughly assess the impact of limited resources
on achieving optimal control and on constraint-induced landscape topology. In the
simulations below, several different constraints are employed to show the diversity
of suboptimal critical point landscape topologies, and the constraint parameters c
will be specified for each case. Maximization of P1→N is considered, as the |1〉 →
|N 〉 transition is most likely a demanding goal when constraints are imposed on the
controls. As discussed in Sect. 1, it is possible to transfer from constrained kinematic
controls to dynamic controls using Eq. (6) [6]. The present paper will not explore this
transfer, but the ability to do so provides an important foundation for the kinematic
analysis [7].

3.1 Exploring a trap resulting from an insufficient number of controls

Many resource limited traps were found to be isolated points on the landscape
as in Fig. 1a (Sects. 3.2 and 3.3 give two examples). However, some constraints
directly produced trap level sets as indicated in Fig. 1b. In order to illustrate this
latter circumstance, the first type of constraint considered here is a reduction in the
number of admitted control variables to M̃ , where M̃ ≤ N (N + 1)/2 [c.f., Eq. (7)].
Figure 2a, b show the monotonic increase in P1→6 during an optimization and the
corresponding evolution of the kinematic control variables, respectively, for an N = 6
dimensional system with M̃ = 2N − 2 = 10 control variables and the remaining
11 matrix elements of A held fixed at randomly generated initial values. Importantly,
the fixed elements included all A1 j , j = 1, . . . , N = 6, which places a substantial
limitation on the ability to move population out of the initial state |1〉. These, and the
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Fig. 2 a Monotonic increase in P1→6 for an N = 6 dimensional system where 2N − 2 = 10 control
variables are utilized and the remaining elements of A are held fixed at randomly generated initial values.
A trap is encountered at P1→6 = 0.411. b (Color available online) Evolution of the control variables

additional fixed variables (A24, A26, A36, A46, A56), prevented complete control and
a trap was encountered at P1→6 = 0.411, as suggested in Fig. 2a.

Simply employing a reduced number of control variables does not necessitate use
of a formal constraint function C as set out in Sect. 2.1. Thus, the Hessian used
to explore the local landscape at the encountered trap is a simplified form of the
constrained Hessian from Eq. (19), specifically, HM̃ = ∇2 P1→6 which is an M̃ × M̃
matrix. The ten eigenvalues of the Hessian are shown in Fig. 3a. Two eigenvalues
are very small, λ9 ∼ 10−7 and λ10 ∼ 10−9 and their corresponding eigenvectors ν9
and ν10 are shown in Fig. 3b. These eigenvalues are sufficiently small to permit their
associated eigenvectors to locally specify a trap level set that may be traversed by
solving the equation

d K

dr
=

[
ν9(r)ν


9 (r) + ν10(r)ν

10(r)

]
g(r) (46)

where g(r) is a function that may be freely chosen to dictate the level set trajectory.
Figure 4 shows that the controls move in a coordinated manner on a level set where g
was a length-M̃ vector with randomly generated elements. During the level set traver-
sal, the eigenvalues and eigenvectors vary [note the r -dependence in Eq. (46)]. The
controls substantially vary over the level set, particularly the elements A33, A55, A23
and A35, which contribute heavily to the eigenvectors in Fig. 3b. The highly coordi-
nated changes in the controls dictated by ν9 and ν10 still maintain P1→6 at the trap
value. Other level set trajectories were explored on the trap with different choices for
g(r) (not shown), and the overall results indicate that the trap level set covers a broad
domain on the landscape.
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Fig. 4 (Color available online) One of many possible level set trajectories on the trap at P1→6 = 0.411 in
Figs. 2 and 3. Over the individual variation of the controls on the level set, the P1→6 value is maintained
at 0.411 to ∼ 10−6. The appreciable changes to the controls indicates that the trap lies on a level set of
extensive size, implying a degree of robustness to noise
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3.2 Local landscape topology at an isolated suboptimal critical point

In the laboratory an important variable is the control fluence Fdyn ,

Fdyn =
+∞∫

−∞
|ε(ω)|2dω, (47)

where ε(ω) = ε̃(ω)exp(ıφ(ω)) is the Fourier transform of ε(t) with ε̃(ω) ≥ 0 being
the amplitude and φ(ω) the phase. In many settings, the fluence is fixed while seeking
an optimal field, however assessing the potential control outcome benefits of varying
the fluence is an important issue. A kinematic analog of fluence is denoted by CF ,

CF = ‖A‖2 = Tr(A† A). (48)

We explore the evolving topology of suboptimal traps as fluence is incrementally
increased to enhance the control freedom, thereby resulting in successively higher
yields for Pi→ f . Separate optimizations were performed (c.f., Sect. 2.1) for N = 4
dimensional systems at each of the fluence values CF = C0 = 0.1, 2, and 4, resulting
in arrival at suboptimal traps with P1→4 = 0.049, 0.708, and 0.976, respectively.
The topology of the respective traps can be assessed by examining the eigenvalues
of the constrained Hessian in Eq. (19), which are shown in Fig. 5. In these cases,
the constrained Hessian eigenvalues are all negative, showing that each trap is an
isolated point on the landscape (i.e., the topology indicated in Fig. 1a). The constrained
Hessian eigenvalues show a general shift towards becoming less negative as the fluence
increases, and the trace of the constrained Hessian (i.e., the sum of the eigenvalues)
increases over the values −13.82,−10.39,−7.06 for CF = 0.1, 2, 4, respectively.
Thus, the trap at P1→4 = 0.049 is a ‘sharper’ point than that at P1→4 = 0.708
or 0.976. For these traps, the gradient vector ∇ P1→4 is approximately zero except
for the element ∂ P1→4/∂ A14, which becomes smaller as the landscape is ascended
further upon relaxing (increasing) CF . The constrained Hessian spectrum in Fig. 5 is
approaching the expected behavior [22] of the unconstrained Hessian ∇2 P1→4 upon
increasing CF , where H → ∇2 P1→4 as ∇ P1→4 → 0 in Eq. (19). The Hessian with
no constraints on the controls has at most 2N − 2 = 6 non-zero negative eigenvalues
at P1→4 = 1, and this behavior is becoming apparent in Fig. 5 as P1→4 increases.

3.3 Varying suboptimal critical point topology

We now introduce a new constraint,

C = ‖A − B‖2 = Tr
(
(A − B)†(A − B)

)
. (49)

Keeping C fixed at a specified initial value CD can be interpreted as A maintaining a
fixed distance from a reference set of controls (matrix) B. For an N = 4 dimensional
system, the following randomly chosen B matrix was employed:
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Fig. 5 Constrained Hessian eigenvalues at P1→4 traps resulting from optimization of an N = 4 dimen-
sional system with the imposition of a fixed fluence constraint CF [c.f., Eq. (48)] whose values are shown
in the Figure along with the resultant suboptimal P1→4 values. All of the Hessian eigenvalues are negative,
such that any change to the control variables would decrease P1→4, indicating that each critical point is
isolated with no accompanying level set. As the fluence, and the resultant P1→4 value, increase, the eigen-
value behavior suggests that the theoretically predicted 2N − 2 = 6 non-zero negative eigenvalues will be
present upon reaching the top of the landscape [22]

B =

⎛
⎜⎜⎝

1.4595 1.3964 1.3912 1.0532
1.3964 1.9300 0.8963 1.2742
1.3912 0.8963 1.0827 0.9294
1.0532 1.2742 0.9294 1.4529

⎞
⎟⎟⎠ . (50)

A randomly generated initial A matrix yielded CD = 1.868; this value for CD was
maintained during a constrained landscape ascent performed using the technique from
Sect. 2.1 along with B in Eq. (50). Figure 6a shows the landscape ascent with A acting
as the control and (b) shows the evolution of the controls up until a trap is encountered
at P1→4 = 0.873 with the following form for A:

Atrap =

⎛
⎜⎜⎝

1.7252 1.5774 1.4261 0.3417
1.5774 1.5055 0.6441 1.5277
1.4261 0.6441 0.9554 1.2323
0.3417 1.5277 1.2323 1.7389

⎞
⎟⎟⎠ . (51)

The eigenvalues of the corresponding constrained Hessian H and projected Hessian
H̃ [c.f., Eqs. (19) and (23), respectively] are shown in Fig. 7a, b, respectively. All
constrained Hessian H eigenvalues are negative, and only one zero projected Hessian
H̃ eigenvalue is present, which corresponds to the ‘trivial’ zero eigenvalue introduced
by the projector P∇C [c.f., Eq. (23)]. Thus, this trap has the topology suggested in
Fig. 1a and does not form a level set, and any variation to the controls will result in
a decrease in P1→4. The following Subsections will utilize the methods presented in
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Fig. 6 a Increase in P1→4 when CD = 1.868 is fixed along with B in Eq. (50). A trap is encountered at
P1→4 = 0.873. b (Color available online) Evolution of control variables during initial landscape ascent.
Upon maximizing P1→4, the control variable A14 changes most significantly

1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

eigenvalue index

ei
ge

nv
al

ue

1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

eigenvalue index

ei
ge

nv
al

ue

(a) (b)

Fig. 7 a Eigenvalues of the constrained Hessian at the trap identified in Fig. 6. All eigenvalues are negative,
indicating that the trap is an isolated point. b Eigenvalues of the projected constrained Hessian. The one
identically zero eigenvalue results from the introduction of the projector P∇C [c.f., Eq. (23)] with a single
imposed constraint

Sect. 2.4 to vary the form of the constraint to convert this isolated trap into either (i) a
level set or (ii) a saddle.

3.3.1 Transforming an isolated trap into a level set: changing Fig. 1a into Fig. 1b

The trap encountered at P1→4 = 0.873 with the forms of Atrap and B in Eqs. (51) and
(50), respectively, was identified to be an isolated point on the control landscape, as
indicated by the negative constrained Hessian eigenvalues shown in Fig. 7a. By consid-
ering B as comprising the constraint parameters, that is, c = [B11, B12, . . . , B44] (c.f.,
Sect. 2.1), the morphing procedure from Sect. 2.4 was employed to determine whether
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Fig. 8 Starting from the trap in Fig. 6, plot a shows the decrease in L1 [c.f., Eq. (42)] as the constraint
parameters B and d0 are morphed, as shown in plot (b), in an effort to identify a projected Hessian H̃ null
space. c Corresponding changes in projected Hessian H̃ eigenvalues, evolving from squares to circles over
the range of u in (a) and (b). Color for (b) available online

a trap level set could be created by varying B. However, in doing so with C = CD

fixed, no discernible change was observed in the trap topology. An additional variable
d0 was introduced such that c = [B11, B12, . . . , B44, d0], where

CD = ‖A − B‖2 + d0 = Tr
(
(A − B)†(A − B)

)
+ d0 (52)

with d0 = 0 in the initial first-order D-MORPH landscape ascent (i.e., to reach the
original trap in Fig. 6); this procedure is equivalent to morphing CD −d0(u) as the extra
constraint variable (while CD is held fixed). This new set c of constraint parameters
was then used to minimize L1 from Eq. (42) while keeping CD = 1.868 fixed at
its original value. Employing the prescription in Sect. 2.4, we have the following: c
is parametrized by the variable u, A is held fixed [at Eq. (51)], P1→4 and CD are
maintained at 0.873 and 1.868, respectively, and the gradients ∇ Pi→ f and ∇CD are
forced to remain parallel by the structure of dc/du [c.f., Eq. (41)]. Figure 8a shows
the monotonic decrease in L1 as B and d0 vary in Fig. 8b. L1 decreases from 6.97 to
2.64, while CD = 1.868 was maintained on the order of 10−5. The final resultant B
matrix was

Blevel set =

⎛
⎜⎜⎝

−0.7317 −0.0952 1.1039 6.9185
−0.0952 5.4296 2.9756 −0.8164
1.1039 2.9756 2.1324 −1.5684
6.9185 −0.8164 −1.5684 −0.9053

⎞
⎟⎟⎠ , (53)

and d0 changed from 0 to −157.8. Figure 8c shows the shift in projected Hessian H̃
eigenvalues during the constraint parameter morphing, and the simulation was termi-
nated at the appearance of a non-trivial zero eigenvalue on the order of 10−4. The
projected Hessian eigenvalues overall shift to be less negative as the constraint para-
meters vary. As shown in Fig. 8c, a slightly positive H̃ eigenvalue also appears, which
is not strictly prohibited during the minimization of L1. Its magnitude is approximately
the same as the smallest negative eigenvalue.
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The new constraint parameters identified above were then used to begin a level
set traversal, where the goal was to vary elements of A starting from Eq. (51) on the
newly created trap level set while B = Blevel set , d0 = −157.8, and CD = 1.868
were fixed. The level set traversal was terminated when P1→4 deviated from 0.873 on
the order of 10−4. The elements of A changed by a few percent (e.g., A14 varied from
0.342 to 0.311, a change of ∼9 %) and all elements differ from their values in Eq. (51),
indicating that there is a connected family of controls that reside on a level set to the
specified precision. In this particular example, the free function g′ in Eq. (29) was
randomly generated, and simulations using other free functions provided additional
A matrices that were on the level set (not shown).

3.3.2 Transforming an isolated trap into a saddle: changing Fig. 1a into Fig. 1c

As a final implementation of the techniques from Sect. 2.4, the isolated trap [with
A from Eq. (51)] was converted to a saddle, where the constraint parameters c =
[B11, . . . , B44, d0] were varied as a function of u so as to maximize L2 in Eq. (45)
starting from Eq. (50) and d0 = 0. Figure 9a shows the evolution of these constraint
parameters where L2 increased from −8.03 to −3.88; consequently, the constrained
Hessian eigenvalues, shown in Fig. 9b, increased (changing from squares to circles).
The inset in (b) shows the appearance of two distinctly positive constrained Hessian
eigenvalues. Here, CD = 1.868 was maintained on the order of 10−4, and B evolved
to

Bsaddle =

⎛
⎜⎜⎝

−3.9120 −2.2603 0.6869 15.4317
−2.2603 10.5090 5.9936 −3.8506
0.6869 5.9936 3.6559 −5.1936
15.4317 −3.8506 −5.1936 −4.3279

⎞
⎟⎟⎠ (54)
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Fig. 9 Starting from the trap in Fig. 6, plot a shows the changes in constraint parameters B and d0 as
L2 [c.f., Eq. (45)] increases in an effort to identify at least one positive constrained Hessian eigenvalue.
The constrained Hessian eigenvalues evolve in (b), changing from squares to circles over the range of u in
(a). The inset in (b) shows that two eigenvalues have become significantly positive. Color for (a) available
online
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Fig. 10 a Increase in P1→4 after identification of positive constrained Hessian eigenvalues in Fig. 9. The
P1→4 trajectory is obtained using the first-order constrained D-MORPH technique presented in Sect. 2.4.
b (Color available online) Evolution of the control variables

with d0 dramatically changing from 0 to −838.7 to compensate for the change in B and
‖A − B‖2 (‖Bsaddle‖2 ∼ 801). At the end of the constraint morphing procedure, the
first-order constrained D-MORPH method was again employed (now over the variable
s′) to see if P1→4 would increase upon implementation with the newly created Bsaddle

and d0 = −838.7. Figure 10 shows the eventual full ascent of the P1→4 landscape
(10a) as the controls A evolve (10b) from Eq. (51). Nominally a step along a positive
Hessian eigenvector would be required to initiate the climb away from the saddle,
but the first-order D-MORPH algorithm was able to still climb from a slow start as
depicted in Fig. 10a.

4 Conclusions

This work developed methodologies to explore the neighborhood around suboptimal
resource limited traps on the quantum control landscape. Through numerical simula-
tions using kinematic controls and a state-to-state transition probability observable,
it was shown that some traps exist as isolated points on the landscape while others
lie on a submanifold of suboptimal solutions. The latter case can be viewed as repre-
senting suboptimal constrained controls exhibiting some degree of robustness, which
has important laboratory implications. This work presented a means to change the
local landscape topology at suboptimal critical points by systematically relaxing the
constraints to address the trade-off between limited resources and landscape behavior.
The relaxation process permitted (i) searching for level sets of observable-preserving
controls through the identification of (at least one) direction of zero landscape curva-
ture, and (ii) seeking a saddle feature by the identification of a direction of positive
curvature, which could then be exploited to further ascend the landscape to achieve
an improved yield.

This work utilized kinematic controls as a means to simplify the analysis and
manipulation of the constrained control landscape. As discussed in Sect. 1, a set of
constrained kinematic controls constituting a suboptimal trap can be mapped to a set of
dynamic controls through, for example, a target unitary transformation [c.f., Eq. (6)].
However, it is important to note that the mapping metric represented by Eq. (6) does not
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necessarily guarantee that the mapped dynamic controls maintain trap-specific topo-
logical features such as a negative definite Hessian spectrum. Conserving higher-order
topological properties through a kinematic → dynamic mapping procedure is a com-
plex and demanding task, and as an alternative one may directly apply the constrained
control procedures from this work to dynamic controls with the understanding that this
latter goal can be computationally costly due to the typical high-dimensionality of the
dynamic control variable landscape. The mapping procedure and direct application of
constraints to dynamic controls will be explored in forthcoming work [7], where both
routes offer the prospect of opening up new avenues for investigating the diversity of
constrained dynamic controls and ultimately their implications in the laboratory.
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